molybdenum

Stable	Atomic mass*	Mole
isotope		fraction
⁹² Mo	91.906 811	0.1477
⁹⁴ Mo	93.905 0883	0.092 26
⁹⁵ Mo	94.905 8421	0.159 00
⁹⁶ Mo	95.904 6795	0.166 74
⁹⁷ Mo	96.906 0215	0.095 60
⁹⁸ Mo	97.905 4082	0.2420
¹⁰⁰ Mo	99.907 477	0.0967

^{*} Atomic mass given in unified atomic mass units, u.

Half-life of redioactive isotope

Less than 1 second

Important applications of stable and/or radioactive isotopes

Isotopes in industrial radionuclide production

- 1) The isotope ⁹⁹Mo is commercially produced by the fission of ²³⁵U and is the parent nuclide to ^{99m}Tc, which is the most widely used radiopharmaceutical in the world. The much longer half-life of ⁹⁹Mo (about 2.7d) allows the radionuclide to be transported more easily than the short-lived ^{99m}Tc. The ⁹⁹Mo/^{99m}Tc generator was originally developed at Brookhaven National Laboratory in the early 1960's and is now a patented system.
- 2) Depleted ⁹⁵Mo is being studied for use in high flux reactors UMo fuel elements.

Figure 1: ⁹⁹Mo/^{99m}Tc generator produces ⁹⁹Tc for elution of gamma-emitting ^{99m}Tc to prepare radiopharmaceuticals, which are used for many practical purposes in the medical field.

Scheme 3.

Isotopes in medicine

1) ⁹⁵Mo can be used to produce medical radioisotope ⁹⁷Ru.